陈明说以群论的方式来研究哥德巴赫猜想,还真是让赵奕非常感兴趣。
群论,是一种数学方法。
从名字就能知道是对于群体的研究,它的重要地位主要体现在抽象代数中,在抽象代数中,许多代数结构,包括环、域和模等可以看作是在群的基础上添加新的运算和公理而形成的。
在抽象代数的其他分支领域,群论也起到了非常重要的影响。
另外,在物理和化学方面的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构,可以用群论方法来进行建模,于是群论和相关的群表示论,在物理学和化学的研究中有大量的应用。
但是用群论研究去做数论研究,而且还具体到素数,听起来就非常的新颖了。
素数本身就可以看作是一个群。
如果能用群论来研究出素数的概念、性质,几乎等于说是破解了素数的奥秘。
那是不可能的。
所以陈明没有能继续研究下去也是可以理解的,但最重要的是方法、角度,他是以什么样的方法,去把群论和素数研究联系在一起的?
赵奕仔细看了陈明的研究内容。
陈明也不吝啬给赵奕讲解自己的进展,他是从黎曼猜想中得到的灵感。
黎曼猜想拥有一定量的素数解,这些素数肯定是不连续的,就可以把他们算作是一个群体。
这等于是把素数分割开来。
陈明希望能够把所有的素数都归在一个个的小群中,比如设计出十个函数,函数的解包含所有的素数,也就等于把素数归在十个集合,分别去进行研究。
当然了。
陈明不可能去考虑,建立十个函数,那样听起来是很简单,但实际上是不可能做到的。
他的研究要更加复杂一些,给素数划分的方法也非常的出奇,比如,他找出了三组有特定的素数,并以此和哥德巴赫猜想相联系,能够证明出三组特定素数中,两两结合可以涵盖所有十位数以下的偶数。
这个研究结果并没有什么意义,因为十位数以下的偶数,都可以用计算机找出他们所对应能分解出来的素数组合,计算机还能找出好多组,而不仅仅是一组。
但毫无疑问的是,陈明的研究思路是非常新奇的。
赵奕都不由得感到惊奇,他完全没有过这种思路。
真是……很出奇啊!
不过陈明的思路和他之前思考的一种证明方法是同一条路,也就是证明素数(包括本身)之间的结合能涵盖所有偶数。
只要能证明素数之间的结合能涵盖所有偶数,自然就广义上证明了哥德巴赫猜想。
如果拿100以内的数字去举例,就非常好理解了。
【看书领红包】关注公..众号【书友大本营】,看书抽最高888现金红包!
比如,偶数22。
11+11=22;3+19=22;5+17=22。
三组素数相加在一起都是22,而类似的偶数实在太多太多,在可计算的领域里,绝大部分偶数都可以分解出不止一组素数的结合。
所以说,广义的角度上来讲,哥德巴赫猜想的内容,也许只是对于‘素数两两结合覆盖偶数’的一种性质表现。
只要能证明广义上的全体覆盖,哥德巴赫猜想自然是不攻而破。
赵奕仔细思考着,很干脆的使用了《相关率》,想知道手中的研究内容与哥德巴赫猜想之间的关系。
【使用失败!】
“失败?”
赵奕还是第一次以类似的方法来得到哥德巴赫猜想的证明条件,他有失败的心理准备,但他预想的失败是精力不足,而不是能力不能使用,“为什么呢?”